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Abstract. Bootstrap percolation models, or equivalently certain types of cellular automata, 
exhibit interesting finite-volume effects. These are studied here at a rigorous level. We 
find that for an initial configuration obtained by placing particles independently with 
probability p < <  1, at sites of Z d ( d  a 2 ) ,  the density of the ‘bootstrapped’ (final) configur- 
ations in the sequence of cubes ( - L / 2 ,  L / 2 ) d  typically undergoes an abrupt transition, as 
L is increased, from being close to 0 to the value 1. With L fixed at a large value, the 
mean final density as a function of p changes from 0 to 1 around a value which varies 
only slowly with &the pertinent parameter being A = J ? ’ ’ ( ~ - ’ )  In L. The driving mechanism 
is the capture of a ‘critical droplet’. This behaviour is analogous to the decay of a metastable 
state near a first-order phase transition, for which the present analysis offers some suggestive 
ideas. 

1. Introduction 

The phenomenon of metastability is of great interest in various situations, including 
numerical studies where questions sometimes arise as to whether an observed effect 
is a phase transition or a manifestation of metastability. Examples with such uncertainty 
have been encountered in studies of the ergodic properties of energy-preserving spin 
flip dynamics [ l ]  and of some cellular automata models [2]. Both of these examples 
are related to bootstrap percolation [3], which is of interest in its own right. Our 
purpose here is twofold: to provide a rigorous analysis of the finite-volume effects in 
bootstrap percolation-including the proof of a sharp transition in suitably scaled 
variables, and to illustrate the role of critical droplets in the phenomenon of metastabil- 
ity by a particularly simple example. 

Bootstrap percolation was (apparently) first considered by Chalupa et al [3] and 
was subsequently studied (rediscovered) by many others in a variety of contexts. The 
model is simply stated: on a d-dimensional lattice, points are independently occupied 
with a (low) density 1 - e-p ( = p )  and the resulting configuration is taken as the initial 
state for dynamics based on some simple local rules, in which the occupation status 
of a point is updated according to the configuration of its neighbours. In the example 
to which we shall explicitly refer the rules are 

(i) the subsequent updates occur simultaneously at all the lattice sites; 
(ii) occupied sites remain occupied; 
(iii) if an unoccupied site has (at a given time) two or more occupied neighbours, 

it becomes occupied (at the next update). 
t Presented at the conference on Mathematical Pro6lems in Statisrical Mechanics held at Heriot-Watt 
University on 3-5 August 1987. Some other papers from the conference were published in Journal ofPhysics 
A: Mathematical and General 1988, volume 21, pp 1741-86. 
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The primary object of interest is the final configuration of the occupation variables. 
In the example given above, the sites which are eventually occupied form the minimal 
covering of the initial set by disjoint rectangles, with separation of at least two empty 
lattice layers. 

We say that a region A is internally spanned if A n Z d  is entirely covered in the 
final configuration for the dynamics restricted to A (with the analogue of the free 
boundary conditions), and denote the spanning probability by the function R :  

( 1 . 1 )  R (  L, p )  = Prob(AL is internally spanned) 

with A L =  (-L/2, L/2)d. 
It has been observed [2-61 that, as p is varied, at large values of L, the spanning 

probability undergoes a rapid transition from 0 to 1, at values of p which are not much 
affected by the doubling of L. One may ask whether in the infinite volume there is an 
associated phase transition at a non-zero value of p (see [2]). It is now well understood 
that the answer to that question is negative [4-61. As to the observed effect: our main 
results identify a scale-that of A = P ’ ’ ( ~ - ’ )  In &at which there is indeed a sharp 
transition, defining (at least for subsequences of p -P 0) a critical A. 

The range of length scales with A below its critical value is reminiscent of a 
metastable regime. We also find in the bootstrap percolation a vaguely defined value 
of p above which that metastable regime does not occur, since the required length 
scale no longer exceeds the correlation length of the independent model (which here 
is O( 1 ) ) .  The last phenomenon is reminiscent of the so-called ‘spinodal decomposition’, 
which has not yet been fully elucidated for any model with short-range dynamics. 

Other variants of the basic set-up are possible, and in 0 2 we present some general 
conditions under which our analysis is applicable. In particular, the time evolution 
presented above is that of the cellular automata model 4234  which has been extensively 
discussed by Vichniac [2]. Our own work originated from discussions with Stauffer, 
cf [l], and later with Griffeath and Vichniac, cf [2]. After deriving the basic results 
we discovered [6] where Lenormand and Zarcone essentially solved the problem-our 
results can be considered as a rigorisation and extension of what they analysed 
heuristically and observed numerically. 

Let us now state our main result on the behaviour of the spanning probability 
R( L, p ) .  As already mentioned, it is instructive to consider it as a function of a scaled 
density parameter A : 

A = p l l ( d - l )  ln ,r- 

with which we write 

R(L, P )  = Q p ( A ) .  (1.2) 

Theorem 1. ( i )  Any sequence of values of p convergent to 0 has a subsequence p n  for 
which the functions Qpn( a )  converge to a step function: 

(1.3) 1 + @ ( A  - U. 
The critical value A c  may depend on the subsequence p n  (meaning that our proof has 
not ruled out such a possibility), but in any case obeys uniform bounds: c,  S A C s  c2 
with the constants ci (>O) described by (3.8). The convergence in (1.3) is pointwise 
at all A # A c .  
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(ii) More explicitly, for small p ,  Q,( . ) are approximate step functions, in the sense 
that for each p there is a threshold A,(p) at which Q,(A) changes from being close to 
0, to being close to 1. The behaviour of R (  L, p )  in the two regimes is described by 

R ( L ,  p )  = exp{-p-”(d-l) [ A , ( p ) - A  +0(1)1}  for o ( l ) < A < h , ( p )  ( 1 . 4 )  

and 
R(L ,  p )  2 1 -exp(-constant x L~-’) for A > h , ( p )  ( 1 . 5 )  

with A , ( p )  obeying the bounds mentioned in (i)  and o(1) representing terms which, 
for p + 0, vanish uniformly in L. 

(iii) The transition regime defined by 

Q p ( A )  E [ E ,  1 - & I  (1.6) 
has, for p + 0, a vanishingly small width in terms of A. Explicitly, for each p :  

AA s [1+0(1)] In ~ - ‘ p ‘ ’ ( ~ - ’ )  ( 6 constant x In C ’ / l n  L ) .  ( 1 . 7 )  

While in the above theorem the spanning probability is considered as a function of L 
at a fixed p ,  it is often more natural to study its dependence on the density p at a fixed 
large value of L. In that case the dramatic change in R occurs at values of p which 
are of the order of constant/ln L. In numerical simulations these slowly varying 
thresholds may appear to be volume independent and suggest the existence of a phase 
transition in the infinite system at a finite density. In fact, the behaviour is best 
interpreted as a metastability phenomenon. 

The connection to metastability can be seen through the proof of theorem 1 .  In 
particular, in lemma 5 we show that the mechanism by which large regions are spanned 
involves the occurrence of ‘critical droplets’ in the initial configuration. These are local 
events whose occurrence in the vicinity of a given site has a very small probability 
when p is small (=exp(-constant x p - ’ ’ ( d - ’ ) ) ) .  For large L, the probability of such a 
locally rare event occurring somewhere in A L  undergoes a sharp transition as a function 
of the parameter A. The situation is quite analogous to metastability phenomena in 
the vicinity of first-order phase transitions. For example, in the ferromagnetic Ising 
model with Glauber dynamics [ 7 ,  81 at low temperatures (see 0 5 )  the magnetic field 
h will play the role of p ;  for large L there will be a fairly well defined critical field 
beyond which the system stops being metastable. In § 5 the results described in theorem 
1 are reformulated in terms of M ( L ,  p ) ,  the probability that the origin is occupied in 
the final configuration. In 0 5 we show that M ( L ,  p )  has the same asymptotic behaviour 
as R(L,p)  and then argue that this (qualitatively) should also be the behaviour of 
MT( t, p)-the probability that the origin is occupied at time t in the dynamical system 
obtained by applying the rules (i)-(iii) to the infinite lattice hd in which the sites are 
initially occupied independently with the probability p .  This leads to a conjecture 
about the ‘metastable behaviour’ in the Ising model at low temperatures. 

2. General formulation of the dynamics 

Let us first state the essential features of the models we discuss. They are not all 
equally relevant, as we comment below. 

(i) The time evolution is deterministic. The most interesting direction of extending 
the results may be the relaxation of this feature by an extension to stochastic models, 
e.g. lattice systems with Glauber dynamics (see 0 5 ) .  
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(ii) No annihilation of particles. We denote the configuration at (integer) times t 
by 71f = { q,(x)}, with q f ( x )  = 0 , l  according to whether the site x is empty (7 = 0) or 
occupied (7 = 1). Condition (ii) means that 7,(x) is a monotone function of t, for 
every x. That monotonicity is not strictly essential, e.g. our analysis can be adapted 
to a modified bootstrap model in which particles with less than two neighbours are 
removed. In the latter dynamics certain finite clusters (of four particles) are stable 
and would play the role of ‘particles’ in our discussion. 

(iii) Attractiveness. If at the initial time a configuration 7’ differs from some other 
configuration 7 only by the addition of some particles, i.e. g’(x) ~ ( x )  for all x, then 
this property will remain true for all subsequent times (i.e. in a natural (FKG) sense 
vf ( t  > 0) is a non-decreasing function of v0.) 

(iv) Marginal stationarity of the planar interface: ( a )  any slab of empty sites, 
parallel to a principal axis of the (cubic) lattice, of thickness greater than some D will 
remain empty for all times, yet (b)  the adsorption of a finite cluster of particles (in 
the present formulation one is enough) on a stationary interface will eventually lead 
to a shift of the whole interface into the empty region. 

Conditions (iii) and (iv) are natural for the problem we are considering, where the 
fully occupied configuration corresponds to the stable state and the empty configuration 
to an unstable stationary state. 

It follows from (iii) and (iv) that a single rectangular set (finite or infinite) of 
occupied sites is stationary; rectangular sets being for us parallelograms aligned with 
the principal lattice planes. When the model’s interaction also satisfies a finite-range 
condition, then any configuration consisting of a union of well separated rectangular 
clusters is stationary. In the bootstrap percolation model the converse is also true. 

(v) Characterisation of stationarity. A configuration is stationary if and only if its 
particles form a collection of rectangular sets separated by distances greater than D. 

The above assumptions are all satisfied for the bootstrap percolation discussed in 
§ 1 for which D = 2 .  Another variant of the model, with all the listed properties and 
D = 1, is obtained by changing the rule so that a vacant site is occupied only if it has 
two occupied neighbours which are not on its opposite sides. Models with other values 
of D may be found in [ 2 ] .  

Condition (v) leads directly to the following deterministic lemma which plays an 
important role in our argument. 

Lemma 1. For all k 3 1, a necessary condition for a region AL with L 3 k to be internally 
spanned (in a configuration 7) is that it contain at least one rectangular region whose 
maximal side length is in the interval [ k, 2k + 03 which is also internally spanned. 

It should be noted that the clusters spanned by bootstrap percolation depend quite 
delicately on the relative placement of widely separated connected clusters (see, for 
example, figures in [ 2 , 6 , 9 ] ) .  In particular, the larger region AL may be internally 
spanned without there being any region with length k ( > 2 )  which is internally spanned. 

Proof: The configuration spanned by the restriction of 7 to A L  can be determined by 
the following algorithmic construction which, at the nth step, deals with a collection, 
V,, of possibly overlapping rectangular regions, each of which is internally spanned. 
Starting with %, as the collection of all the internally spanned rectangles of an arbitrarily 
chosen size k o a  k, we proceed by choosing at each step a pair of rectangles in the 
configuration whose distance is not greater than D and replacing them with the minimal 
rectangular region which contains both. The lemma follows by the observation that 
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the maximal length of a rectangle in %’ increases in this process no faster than 
m + 2 m + D ,  and that it does reach L if ,AL is internally spanned. 

3. Critical droplets 

In the proof of the main result (stated in 0 1 )  we arrive at a more complete description 
of the spanning probability R ( L ,  p ) ,  which exhibits different behaviour over different 
length scales. In the following description we take p as fixed at a small value. 

( i )  For small L, R ( L ,  p)-which is a polynomial in p of degree not greater than 
lAL( (= Ld)-decreases rapidly with L. While we do not quite prove monotonicity, we 
show that for p small enough the maximal value of R(L,p)  over lengths up to 
O(P-”(~- ’ ) )  occurs at L = 1. For lengths of the order of O( P - ” ( ~ - ’ ) ) ,  R( L, p )  is so 
small that the quantity a ( L , p )  defined by 

1 (3.1) - k / ( d - l )  R(L, P) = exp(-dL,  P I P  
is of order O(1). 

(ii) After the initial transient regime, there is a plateau extending over the wide 
range of scales: p - ’ /  E s L S exp( ~ p - ’ ’ ( ~ - ’ ) ) ,  where the function a( L, p )  (which deter- 
mines R (  L, p ) )  is approximately constant, 6( p )  = O( 1). E is interpreted here as a small 
quantity which is taken to 0 at a rate slower than any (fractional) power of p .  (The 
arguments we use suggest that the plateau starts already at L=p-”‘d- ’ ) /~ . )  

(iii) When the length gets to be of the order of L =  exp(Ap-l”d-” ), with A = 0(1) ,  
a drops down linearly in A ( = p l ’ ( d - ’ )  In L) as 

a (L,  p )  = 6 - A .  (3.2) 

At the critical value of A ( =  &( p ) )  R (  a ,  p )  ceases to be small. 
(iv) For values of A beyond A, the spanning probability R is approximately 1, 

with deviations vanishing at the rate described in (1.5). 
The interpretation of the behaviour of R (  . , p )  in the regimes ( 2 )  and (3) is that 

the bootstrap percolation is dominated by the occurrence (somewhere in A,) of a 
fairly local ‘bottleneck event’, whose probability is close to g(p!-inf{R(n, p) ln  3 1). 
The following statement establishes the order of magnitude of R ( p ) .  

Remark. While both L and n will typically denote lengths, we tend to use n for sizes 
which are small on what will eventually be regarded as the ‘macroscopic’ scale. 
(Nevertheless, the formulae we write hold for all lengths.) 

Lemma 2. For all n and p,  the quantity a( . , ) defined by (3.1) satisfies 

where g(  ) is the function 

g(z)  = z In[l -exp(-zd-l)]-’. 

ProoJ (i)  The upper bound in (3 .3) ,  which expresses a lower bound on R ( n ,  p ) ,  is a 
consequence of the fundamental observation [4,5] that there is an event of non- 
vanishing probability which ensures that all the cubes centred at the origin (or at any 
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other given point) are internally spanned. The condition is (by property (iv)(b) of 
0 2) that for each ksO there is at least one particle on each of the 2d faces of the 
cube of length (2k + 1) centred at the origin. This yields 

n / 2  
~ ( n , p ) s  n ( l - e ~ p [ - p ( 2 k + l ) ~ - ' ] } ~ ~  

k = O  

n / 2  
= exp( -2d k = O  In{ 1 - exp[ -p(2k + l)d-']}-') 

(3.4) 

(ii) For an upper bound on R ( n , p )  we use the fact that (by property (iv)(a)) a 
necessary condition for a region of width n to be internally spanned is that in its 
partition into n / D  disjoint slabs, of width 0, parallel to one of the principal lattice 
planes, each slab contains at least one particle. Hence, for each n 2 1 (not necessarily 
a multiple of D )  

~ ( n , p ) ~  [I - e x p ( - p ~ n ~ - ' ) ] " / ~  

= exp{ - ( n / ~ )  In[l - exp( -p~n~- ' ) ] - ' }  

g[n")"~d-'']}. (3.5) = exp{ - ~ d /  ( d  - 1 ) p  - I/(d - 1) 

When expressed in terms of a ( n , p ) ,  the bounds (3.4) and (3.5) yield (3.3). 

We shall now use the left-inequality in (3.3) to prove the statements made above about 
the transient regime (1). 

Lemma 3. (i) There is <CO (depending only on d )  such that, for each p ,  

max{R(n,p)llS nS C(pD)- ' / (d- ' )}6pDd.  (3.6) 
Furthermore, for p small enough the maximum in (3.6) is at n = 1. 

ProoJ: Since pDd is an upper bound on the probability of there being at least one 
particle in AD, it certainly bounds R(n, p )  for n E [ l ,  03. Now let be the first local 
maximum of the function g(  ) on [0, CO). (That is a well defined number since g(  . ) 
is continuous, vanishes at z = 0 and +a, and is positive elsewhere.) By the monotonicity 
of g(  ) in [0, e ] ,  the lowest value the bound (3.5) takes within the region 0 s  n s 
c ( p D ) - l " d - l )  is at n = 0, where it yields pDd. That proves (3.6). 

To see that for p small enough the minimum in (3.6) is at n = 1, one may split the 
range of values of n into the three cases: n = 1, 2 6 n s 2 0 ,  2 0  S n s C( pO)- ' / (d- ' ) .  
For the last two cases R (  n, p )  S bp2, with a finite constant b. (For the second regime, 
that follows from the necessity to have at least two particles, and for the third regime 
by an adaptation of the argument used above.) Thus, for p < b the minimum is at 
n = l ,  where R ( l , p ) = p .  

It should also be noted that the claim made in (1) in relation to (3.1) is an explicit 
consequence of the lower bound in (3.3). Our next step is to establish the existence 
of the plateau described in (2).  
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Lemma 4. For each p ,  and pair of positive numbers A >> 1 >> B, such that A > 3 In p - I ,  
a( * ,  p )  as a function of n is approximately constant throughout the regime 

Ap-‘ s n s exp( Bp-’ ’ td- ‘ ’ )  

satisfying there 

la( n, p )  - 61 c 2dB +2dp-‘d-2’’‘d-1’ exp( - 4 3 )  (3.7) 

with some Ci = &( p ) ,  which satisfies 

sup{g(z)/z 5 0) d Ci S d (3.8) c = g d / ‘ d - l )  
1 -  

Proof: Taking as the ‘seed’ for the construction which led to (3.4) not a single particle 
at the origin but, instead, an internally spanned region Ak with any k S n, we get 

3 R (  k, p )  exp[ -p-l’(d-’) exp( -Ad-’/2)] (3.9) 

where in the second step it is assumed that k p ’ / ( d - ’ ) 2  A. 

by the deterministic observation made in lemma 1, 
For an opposite bound on the ratio of the two spanning probabilities, we note that, 

R ( n , p ) C  k d n d R i ( k , p )  (3.10) 

where R , ( k ,  p )  is the maximum of the spanning probabilities of rectangular regions 
whose longest side length falls in the interval [ ( k  - 0 ) / 2 ,  k]. The factor kdnd on the 
right-hand side of (3.10) counts the number of such rectangles in A,, and the bound 
is on the probability that at least one such rectangle is internally spanned. In order 
to replace R , ( k ,  p )  by R ( k ,  p ) ,  we note that, by a similar construction to the one leading 
to (3.4), 

R ( k , p ) z  R , ( k , p )  exp{-kd ln[l -exp(-p(k-D)/2)]-’} 

3 R l ( k , p )  exp[-2dp-’ exp(-A/3)] (3.11) 

where we used the fact that 1. Combining (3.11) with (3.10) we have 

R ( n , p ) s  k d n d R ( k , p )  exp[2dp-’ exp(-A/3)]. (3.12) 

(An observant reader may note that for d > 2 the power of p in the last two bounds 
may not be optimal. That is due to the limitation of our ‘worst case’ scenario for the 
spanning of AL .) 

The inequalities (3.9) and (3.12) directly imply the claim made in (3.7), with the 
bounds (3.8) on Ci being deduced from those of lemma 2. In this argument, the role 
of the assumptions involving B is to ensure that the entropy-related factor kdnd, of 
(3.121, has only a negligible effect on a ( n ,  p ) .  

We now turn to justify the ‘critical droplet’ picture to which reference has already 
been made a number of times. The main idea is expressed in lemma 5 ,  where the 
event that AL is spanned is shown to be effectively equivalent to the occurrence in AL 
of a localised ‘bottleneck’ event, whose main parameters are ( i )  its probability (close 
to l ? ( p ) )  and (ii)  the (linear) size of its localisation, n ( p ) .  Because of the existence 
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of the plateau discussed above, and the low value of k ( p ) ,  we have the freedom to 
choose n ( p )  within a large range of scales without significantly affecting either the 
probability or the resulting entropy factor (as can be seen in (4.1) below). For 
convenience, we choose 

n ( p ) = p - ’ .  (3.13) 

In a certain sense this value for n is much too large (with a more natural choice being 
P -l’(d-l)/o(l)) .  However, it enables one to derive the property presented in the 
following lemma by means of very crude estimates. 

Lemma 5. Let A i ( L ) ,  i = 1,2,3,  denote the following three families of events: 
A , (  L )  = A L  is internally spanned, 
A2( L )  = A L  contains a translate of A,,(p) which is internally spanned, 
A,( L )  = AL contains an internally spanned block which is a translate of An(p)  and 

is centred at a point of the sublattice 

G , 2 d  = [ n ( p ) / 2 1 k d .  

Then, for p + 0 and L E  (n( p ) ,  exp( p 2 / 2 ) ) ,  these events are ‘almost equivalent’, in 

Prob(A,(L)AA,(L))  s exp(-Cp-’) (3.14) 

the sense that their symmetric differences carry only very small probabilities: 

with some C <a, independent of p (and AAB = (A\B) U (B\A)).  

Remarks. (i) The event A2 may be regarded as the occurrence of a critical droplet 
within A L .  The somewhat artificially restricted event A ,  has a simpler structure, which 
is close to that of a union of a family of independent local events. 

( i i )  The upper restriction on L in the statement of the lemma is only ‘temporary’, 
since our results will imply that, for greater L, the probabilities of all Ai are much 
closer to 1 than exp(-Cp-2). 

Proof: We prove (3.14) by showing that there is an event G, whose probability is close 
to 1, conditioned on which the events Ai  are all equivalent. We choose for G the 
event that each linear segment of length n ( p ) / 2 ,  aligned with one of the principal 
axes, has at least one occupied neighbouring site on each of its 2d long sides. The 
probability for the condition to fail on a given segment is clearly bounded by 
2dexp(-pn( p ) / 2 )  and the number of such linear segments does not exceed dLd. Hence 

(3.15) 

On the condition that G occurs, the event A 2  (and hence also A 3 )  is easily seen to 
yield A , .  For the converse direction we make use of lemma 1, by which A ,  implies 
that there is in AL an internally spanned region whose diameter is between [ n (  p )  - 0 ] / 2  
and n ( p ) .  Any such region is entirely contained in at least one of the translates of A,, 
by vectors in the lattice H n 1 2 d .  Under the condition G, that translate is also internally 
spanned. Therefore 

A , ( L ) A A , ( L ) c  G‘ (3.16) 

for i ,  j = 1,. . . , 3  and the claim (3.14) follows from the bound (3.15), with a simple 
choice of C. 

Prob( G‘) < 2d2Ld exp( -pn(  p ) / 2 ) .  
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4. The spanning probability R(L, p )  

Using the results of 0 3, we shall now prove the main theorem, which is stated in 0 1. 

Proof of theorem 1. The behaviour of the spanning probability R (  L, p) in the intermedi- 
ate regimes is derived in lemmas 3 and 4. By lemma 5, for L in the range 
( n ( p ) ,  exp( p2/2)) R ( L ,  p) = Prob(A,(L)) is well approximated by the probability of 
the 'critical droplet' event A,(L). That event is easy to estimate, since it concerns a 
fixed number of translates (corresponding to the 2d different sublattices of Z n / 2 d )  of 
an event which is just an intersection of independent local events. The obvious 
arguments yield 

2d[L/n]dR(n ,p)s  Prob(A,(L))a 1 -[1 - R ( n , p ) ] [ L ' " l d  

i= 1 - e x p { - ~ ( n , p ) [ ~ / n ] ~ )  (4.1) 

with n = n ( p ) .  

we get the following. 
Combining the above with (3.14), and the estimate provided by lemma 4 for R (  n, p ) ,  

(i) For L with pl/(d-l)  In L = A < &( p ) :  R ( L ,  p) = o( l ) ,  satisfying 

R ( L ,  p )  = exp{-p-"(d-l) [(&(PI -A)+o( l ) l I  (4.2) 

as claimed in (1.4). 

being 
(ii) For L (sexp(p2/2))  with A > & ( p ) :  R ( L , p ) =  1 -o(l) ,  with our initial bound 

R(L,  p )  2 1 - exp{-p-'/'d-''[(A - &( p ) )  + o(l)]}. (4.3) 

The above bound is not optimal and can be improved by the following renormalisa- 
tion argument which also extends the result beyond the restriction Ls exp(p2/2) made 
earlier. 

Let us partition the original lattice Z d  into a similar lattice of blocks of size A b ,  
with some Lo 3 1. For each initial particle configuration we generate a configuration 
on the rescaled lattice by regarding a site as occupied if the corresponding block is 
internally spanned, and then performing on this system a bootstrap percolation process 
with D = 1 (i.e. one where only direct neighbours have a combined effect, see 0 2). It 
then follows that a sufficient condition for AkL, on the original lattice to be internally 
spanned is that the corresponding region Ak on the rescaled lattice is spanned by its 
process. Thus, R (  e ,  e )  obeys the following 'renormalisation inequality' 

R ( L ,  P) 3 J ( L / L o ,  R(Lo, PI) (4.4) 
where I? is the function R for the particular bootstrap percolation process with D = 1, 
and (for simplicity) we assume that L is a multiple of Lo. 

When p is close enough to 1, the standard contour expansion for the site percolation 
problem (related to the Peierls expansion) converges and proves that 

Z ( k ,  p )  2 1 -exp(-constant x a k d - ' )  (4.5) 
for p 3 1 - exp( - a) with sufficiently large a. 

To improve on (4.3), we choose pa to be any density high enough so that (4.5) is 
satisfied, e.g. any point above the Peierls value (presumably, any point above the actual 
percolation threshold will also do) and let Lo be the smallest L for which R ( L ,  p )  2 PO. 
(The value of A corresponding to Lo is of the order of &( p) + o( l).) The combination 
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of the renormalisation inequality (4.4) with the high-density estimate (4.5) yield the 
improved bound (1S). 

(iii) Let us now tum to the transition regime, which may naturally be defined by 
the condition (1.6) with some arbitrary (small) E, which will be kept fixed as p + 0. 
The basic inequalities (3.14) and (4.1) imply that, throughout this regime, 

(4.6) 

with o( 1) representing &-independent quantities which vanish when p + 0. Con- 
sequently, when L varies throughout the transition regime defined by (1.6), at a fixed 
p ,  the variation of A (around the value 6 ( p ) )  is bounded by 

l , ( d - , )  constant x In A A G [ I + o ( I ) ] ~ ~ ( E - ’ ) ~  1 
In L (4.7) 

That establishes (1.7). 

implied by standard compactness arguments. 
The results derived above are stated as (ii) and (iii) of this theorem. Part (i) is 

Without stating this as a theorem, let us point out that the most drastic manifestation 
of the transition discussed here may be seen by observing the density of the bootstrapped 
configuration in an increasing sequence of cubes with consistent initial configurations 
(obtained either by randomly extending the configuration at each step into A L + l \ A L ,  
or equivalently by generating the initial configuration directly for all Z d ) .  Our analysis 
can be applied to show that typically, for p < <  1, in such a process the density of the 
occupied sites jumps at a certain random value of L from being of the order of O ( p )  
to 1. (Typically, the value of A corresponding to that random L deviates from A, by 
not more than the order of AA discussed above.) 

5. The time evolution picture 

5.1. Behaviour of the time-dependent density function 

So far our discussion centred on the quantity R ( L ,  p )  which describes properties of 
the bootstrap percolation in the limit where L + a3 after first taking the time to infinity. 
It is also very instructive to consider the other order of limits, namely consider the 
infinite system’s time evolution. The basic information on that process is conveyed by 
the quantity 

M r ( t , p )  = P r o b ( d 0 )  = 1) (5.1) 

(in the notation of 0 2),  which we view as analogous to the time-dependent magnetisa- 
tion for Glauber dynamics of a spin system. 

We conjecture here that M,( t ,  p )  also behaves like an approximate step function 
(somewhat like R (  . , ) when p + 0) in terms of the parameter AT = P ” ( ~ - ’ )  In t in the 
sense that, for some critical value AT.,: 
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This statement may, of course, be rephrased in a stronger way, since the convergence 
of M to either 0 or 1 means also that the probability measure describing the entire 
configuration 7, converges to a limit, which in one case is concentrated on the 
empty configuration and in the other case on the completely filled one (with v(  ) 1). 
For reasons mentioned in the introduction (and in the abstract) we regard (5 .2)  as a 
demonstration of a metastability phenomenon, even though (5.2) in itself does not 
convey the full information about the demise of the metastable phase, e.g. at the level 
of detail reached in the case studied by Cassandro et al [ 101. (We thank R Schonmann 
for calling our attention to this difference.) 

A related quantity, which is somewhat easier to analyse, is 

M ( L ,  p )  = Prob(0 is occupied in the final configuration 
for the bootstrap percolation in A L ) .  (5.3) 

It may be noted that MT( t, p )  and M (  L, p )  are both monotone increasing functions 
in each of their arguments (unlike R ( L ,  p ) )  and they clearly satisfy 

M ( f ” d / 2 , p ) s  M T ( t , P ) d  M ( t , p ) .  (5.4) 

For M ( .  , a )  we have the following result. 

Theorem 2. 

13 syp{lM(L, p )  - R ( L ,  p)ll = 0. (5.5) 

in  particular, for p<< 1,  M ( L , p )  is an approximate step function in the variable 
A = p l ’ ( d - ’ )  In L, with the transition from 0 to 1 occurring at A , ( p )  (of theorem 1 ) .  

Roo$ We approach M ( L ,  p )  by writing it as follows (with n < L ) :  

R ( L , p )  s M ( L ,  p )  = [ M ( L ,  P) - M (  n, P)1+ M ( n ,  P) (5.6) 

where the inequality expresses the obvious fact that if A L  is internally spanned then 
0 is occupied at the final configuration of A L .  For a bound on the right side, which 
will of course be of interest only for L with A below A,, we note that 

M ( L ,  P) - M(n9 P) 
= Prob(0 is covered in the final configuration of AL, but not in the 

d Prob(the final configuration of A L  includes a cluster which connects 

final configuration of A,,) 

0 with A:). (5.7) 
Under the condition G discussed in the proof of lemma 5, if the event on the right-hand 
side of (5.7) occurs, then AL is spanned. Hence 

( 5 . 8 )  
With n = n ( p )  of (3.13),  we have Prob(G‘)+O as p + O  (by (3.15)). Therefore it only 
remains to show that 

(5.9) 

M (  L, p )  - M (  n, p )  s R ( L ,  p )  + Prob( G‘) .  

lim P+O sup{M(n, p ) l n  s 1/p3} = o 
which makes sense since l ip3  is far below exp(A,p-”‘d-”) where the transition of 
R ( L ,  p )  occurs. 
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By the arguments of (5.7) and (3 .5)  we get 

M(n + 1,  p )  - M(n, P) 
s Prob(in the final configuration of A,,+l 0 is connected to dA,)  

s 2 d { l  -e~p[-pD(;n)~- ’ ]}”’*~ (5.10) 

which easily implies (5.9) (e.g. see the discussion in the proof of lemma 3). 

We note that, in view of the relations (5.4), part of the conjectured behaviour (5.2) 
does follow from theorem 2, namely one can produce values AT,- and A , +  (using the 
bounds provided for A, by (3.8)) with which 

(5.11) 

5.2. A conjecture for Glauber dynamics 

The bootstrap percolation problem discussed here is related by strong analogies to the 
question of the metastable behaviour in systems undergoing first-order phase transi- 
tions. For example, at low temperatures the infinite-volume Ising system, say with 
nearest-neighbour ferromagnetic interaction J, undergoes a first-order phase transition 
at magnetic field h = 0, with the density (of up spins) changing discontinuously from 
p- = O  for h = 0- to p+ = 1 for h = 0’. At h = 0 there are two phases, which can be 
obtained by taking the infinite-volume limit of Gibbs states in finite regions A c Zd 
with ‘- ’  or ‘+’ boundary conditions. For h # 0, on the other hand, there is only one 
phase and the infinite-volume limit of the Gibbs measures p (  7 ;  h, A, * ) is independent 
of the boundary conditions. Under the Glauber dynamics at h # 0 any initial state 
converges to the unique Gibbs state. Nevertheless, at low temperatures and small 
h > 0, starting from a typical ‘-’ configuration one finds that for long times the state 
of the system closely resembles the ‘ - ’ phase. Locally, the change from this ‘metastable 
state’ appears (experimentally and in computer simulations) to occur rather abruptly 
on the timescale of the ‘incubation’ time. 

A number of attempts have been made to develop a conceptually clear, and 
computationally useful, notion of the metastable state and of its demise. Without 
entering into this discussion, let us conjecture here that the time-dependent density in 
the spin system described above satisfies the suitable analogue of (5.2) with p replaced 
by the magnetic field h, and the convergence of M to 0 or 1 replaced by the convergence 
of the measure (describing the spin configuration at the time t )  to the ‘ - ’  phase in 
one case and the ‘+’  phase in the other. 

Some results which may be useful for the analysis of the above conjecture may be 
found in the work of Capocaccia et af [8] on the ‘restricted ensemble’ of Penrose and 
Lebowitz [7]. 
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